Human–robot interaction is the study of interactions between humans and robots. It is often referred as HRI by researchers. Human–robot interaction is a multidisciplinary field with contributions from human–computer interaction,artificial intelligence, robotics, natural language understanding, design, and social sciences
Origins
Human–robot interaction has been a topic of both science fiction and academic speculation even before any robots existed. Because HRI depends on a knowledge of (sometimes natural) human communication, many aspects of HRI are continuations of human communications topics that are much older than robotics per se.
The origin of HRI as a discrete problem was stated by 20th-century author Isaac Asimov in 1941, in his novel I, Robot. He states the Three Laws of Robotics as,
“ |
| ” |
These three laws of robotics determine the idea of safe interaction. The closer the human and the robot get and the more intricate the relationship becomes, the more the risk of a human being injured rises. Nowadays in advanced societies, manufacturers employing robots solve this issue by not letting humans and robots share the workspace at any time. This is achieved by defining safe zones using liar sensors or physical cages. Thus the presence of humans is completely forbidden in the robot workspace while it is working.
With the advances of artificial intelligence, the autonomous robots could eventually have more proactive behaviors, planning their motion in complex unknown environments. These new capabilities keep safety as the primary issue and efficiency as secondary. To allow this new generation of robot, research is being conducted on human detection, motion planning, scene reconstruction, intelligent behavior through task planning and compliant behavior using force control (impedance or admittance control schemes).
The goal of HRI research is to define models of humans' expectations regarding robot interaction to guide robot design and algorithmic development that would allow more natural and effective interaction between humans and robots. Research ranges from how humans work with remote, tele-operated unmanned vehicles to peer-to-peer collaboration withanthropomorphic robots.
Many in the field of HRI study how humans collaborate and interact and use those studies to motivate how robots should interact with humans..The goal of friendly human–robot interactions
Robots are artificial agents with capacities of perception and action in the physical world often referred by researchers as workspace. Their use has been generalized in factories but nowadays they tend to be found in the most technologically advanced societies in such critical domains as search and rescue, military battle, mine and bomb detection, scientific exploration, law enforcement, entertainment and hospital care.
These new domains of applications imply a closer interaction with the user. The concept of closeness is to be taken in its full meaning, robots and humans share the workspace but also share goals in terms of task achievement. This close interaction needs new theoretical models, on one hand for the robotics scientists who work to improve the robots utility and on the other hand to evaluate the risks and benefits of this new "friend" for our modern society.
With the advance in AI, the research is focusing on one part towards the safest physical interaction but also on a socially correct interaction, dependent on cultural criteria. The goal is to build an intuitive, and easy communication with the robot through speech, gestures, and facial expressions.
Dautenhan refers to friendly Human–robot interaction as "Robotiquette" defining it as the "social rules for robot behaviour (a ‘robotiquette’) that is comfortable and acceptable to humans"[1] The robot has to adapt itself to our way of expressing desires and orders and not the contrary. But every day environments such as homes have much more complex social rules than those implied by factories or even military environments. Thus, the robot needs perceiving and understanding capacities to build dynamic models of its surroundings. It needs to categorize objects, recognize and locate humans and further their emotions. The need for dynamic capacities pushes forward every sub-field of robotics.
On the other end of HRI research the cognitive modelling of the "relationship" between human and the robots benefits the psychologists and robotic researchers the user study are often of interests on both sides. This research endeavours part of human society.
General HRI research
HRI research spans a wide range of field, some general to the nature of HRI.
Methods for perceiving humans
Most methods intend to build a 3D model through vision of the environment. The proprioception sensors permit the robot to have information over its own state. This information is relative to a reference.
Methods for perceiving humans in the environment are based on sensor information. Research on sensing components and software lead by Microsoft provide useful results for extracting the human kinematics (see Kinect). An example of older technique is to use colour information for example the fact that for light skinned people the hands are lighter than the clothes worn. In any case a human modelled a priori can then be fitted to the sensor data. The robot builds or has (depending on the level of autonomy the robot has) a 3D mapping of its surroundings to which is assigned the humans locations.
A speech recognition system is used to interpret human desires or commands. By combining the information inferred by proprioception, sensor and speech the human position and state (standing, seated).
Methods for motion planning
Motion planning in dynamic environment is a challenge that is for the moment only achieved for 3 to 10 degrees of freedomrobots. Humanoid robots or even 2 armed robots that can have up to 40 degrees of freedom are unsuited for dynamic environments with today's technology. However lower-dimensional robots can use potential field method to compute trajectories avoiding collisions with human.
Cognitive models and theory of mind
A lot of data has been gathered with regards to user studies. For example, when users encounter proactive behaviour on the part of the robot and the robot does not respect a safety distance, penetrating the user space, he or she might express fear. This is dependent on one person to another. Only intensive experiment can permit a more precise model.
It has been shown that when a robot has no particular use, negative feelings are often expressed. The robot is perceived as useless and its presence becomes annoying.
In another experiment, it has occurred that people tend to attribute to the robot personality characteristics that were not implemented.
No comments:
Post a Comment